

SHARE – Boston, August 3rd, 2010

CICS Performance Analysis Essentials

By Ivan Gelb

Think *Faster* with Gelb Information

Trademarks & Copyright

 The following are trade or service marks of the IBM Corporation: CICS, CICS TS, CICSPlex, DB2, IBM, MVS, OS/390, z/OS, Parallel Sysplex. Any omissions are purely unintended.

© 2010, Ivan L. Gelb

Gelb Information Systems Corp.

10 Country Club Lane, Marlboro, NJ 07746-1447 Phone: 732-303-1333 E-mail: ivan@gelbis.com

Permission granted to reproduce presentation only in its entirety and include all copyright notices. All comments, contributions and questions are welcomed and rewarded.

Think *Faster* with Gelb Information

Disclaimer

All of the information in this document is tried and true. However, this fact alone cannot guarantee that you can get the same results at your workplace. In fact, some of this advice can be hurtful if it is misused and misunderstood. Gelb Information Systems Corporation, Ivan Gelb and anyone found anywhere assume no responsibility for this information's accuracy, completeness or suitability for any purpose. Anyone attempting to adapt these techniques to their own environments anywhere do so completely at their own risk. \odot

Think *Faster* with Gelb Information

- Your Questions @Anytime
- V4.1 Performance
- Performance Analysis
- Processor Performance
- I/O Performance

Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp. Any questions? Email to: <u>ivan@gelbis.com</u>; Call: 732-303-1333

Slide 4

- Throughput improved via more efficient workload management with Sysplex optimized workload routing enabled at the z/OS Coupling Facility (CF)
 - Most effective if routing and target regions managed by different CMASs in a single Sysplex
 - Monitor distribution of dynamic workloads through CICSplex via new CPSM WUI views
 - Load value, including all tasks, and health status for a CICS region is broadcast with basic health status
 - CICSplex SM uses data in CF to make dynamic routing decisions
 - Target regions refresh interval for their data in CF is between 1 ms and up to 2 seconds. Default = 200ms
 - Smaller refresh values increase CF utilization

Think *Faster* with Gelb Information

- New support for z/OS Workload Manager (WLM) service policy specified <u>percentile</u> goals
 - Addition to average response time goals support
 - CICSplex SM optimizes response times by routing to region it deems most likely to meet goals
 - Router and target regions managed by same CMAS
 - Percentile goal example: 95% of transactions need response time of less than 1 second
 - Average response time goal example: Average response time < 0.75 seconds
 - Average response time goals subject to WLM "over-reactions" due to effects a few long tasks ending in the interval's workload mix

Think *Faster* with Gelb Information

- CICS XML parsing improved via new z/OS XML System Services (XMLSS) parser which CICS can access directly
 - XMLSS can offload parsing to zSeries Application Assist Processor (zAAP)
 - Parsing offload can improve response time for all transactions because CPU time is moved to zAAP
 - zAAP CPU time cost is at least 80% lower than general purpose CPU cost!
 - XMLSS parser uses above-the-bar storage

Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

- Improvements in CICS monitoring
 - New performance data metrics for Web and Web service applications
 - New transaction resource class monitoring data for distributed program link (DPL) requests
 - DPLLIMIT, FILELIMIT and TSQUEUELIMIT options limit the number of DPL requests, files, and Temp Storage queues for which CICS will perform transaction resource monitoring
 - New default is to compress monitor records

Think *Faster* with Gelb Information

Performance Analysis - 1

Top 10 recommended questions for performance analysis:

- 1. What is the complaint, and are any other older complaints still around/being reported?
- 2. When did this problem 1st occur and occur the last time?
- 3. How many changes occurred during period we study and what are they?
- 4. How much the transaction rate changed in any direction?
- 5. How much did total system workload composition change?

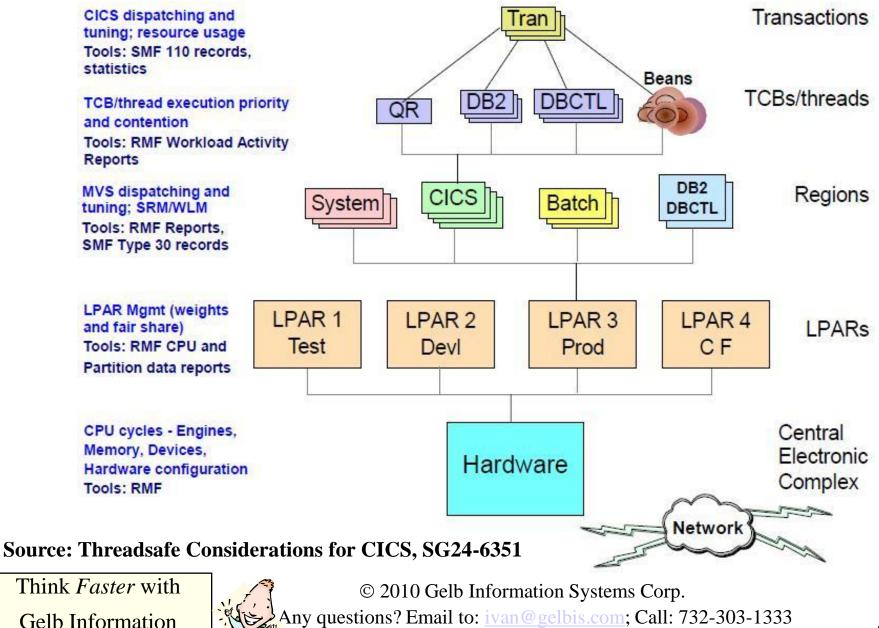
Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

Performance Analysis - 2

Top 10 recommended questions continued:

- 6. Was anything moved around (workloads, files, disks, regions,..)?
- 7. Any changes made to z/OS WLM service policy?
- 8. If multiple LPARs under PR/SM, how much did the total load of all LPARs change, or is 100% physical utilization hit more often and longer than before?
- 9. If multiple LPARs under PR/SM, did any weights or caps change (switched from uncapped) ?
- 10. What were the recent changes to the application? Yes the list grows if you seek end-to-end info!


Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

Performance Analysis - 3 Performance Hierarchy

Measurement Data Sources

• ²Resource Measurement Facility (RMF)

- System wide resource level details: CPU disks, storage, workload performance, and summary
- System Management Facility (SMF)
 - Address space level details for: batch, STC, CICS, etc. + resource level details/address space
 - VSAM file and DB2 object level activity details
- CICS end-of-day and interval statistics
 - CICS Region level statistics and resource counters for: CPU, IO, storage, transactions, connections, etc...
- CICS Monitoring Facility (CMF)

- Transaction level details. All the details!

Think *Faster* with Gelb Information

Processor Performance Analysis

- <u>Three</u> dispatchers involved in making physical processor time available to a CICS task:
 - PR/SM dispatches tasks of LPARs
 - z/OS dispatches tasks within LPAR, and
 - CICS dispatches tasks within the region
- LPAR weights based shares are enforced by PR/SM only when the processor is at or near 100% busy <u>or</u> LPAR is capped

Think *Faster* with Gelb Information

CEC Level Processor Analysis

• LPAR weight and the guaranteed CPU share

LPAR	Weight	% Share	Guaranteed # of CPs
PRODHOT1	225	45%	7.2
PRODHOT2	225	45%	7.2
PRODWARM	50	10%	1.6
Totals	500	100%	16

- Effective Dispatch Time from PR/SM view
- Partition Dispatch Time from z/OS view
- Short CPUs = task may get a <u>fraction</u> of one CP

Think *Faster* with Gelb Information

RMF Partition Data Report

							Ρ	ARTI	ITION DA	TA REPOR	Т			D	AGE
	z/OS V1R10				SYSTEM ID S59					TE 07/28/2009 INTERVAL 15.00.010					Hal
						RPT VERSION V1R10 RMF TIME 17.00.00 CYCLE 1.000 SECONDS									
MVS PARTI						\$59		NUMBE	ER OF PHYSICAL	PROCESSORS	26		GROUP N	IAME	N/A
IMAGE CAP			D DADT	TTONS		1127 12			CP AAP		20 2		LIMIT		N/A
WAIT COMP			D PARI	111045		NO NO			IFL		2 0				
DISPATCH					n	YNAMIC			ICF		2				
DISPATCH	THIC	NAL.			0	manic			IIP		2				
											-				
	PART	TITION	DATA				l	OGICAL	PARTITION PROC	CESSOR DATA	AVERAGE	PROCESSO	R UTILIZATI	ON PERCENT	TAGES -
			MS	U	-CAP	PING	PR00	ESSOR-	DISPATCH	TIME DATA	LOGICAL PRO	CESSORS	PHYSIC	CAL PROCESS	SORS
NAME	S	WGT	DEF	ACT	DEF	WLM℁	NUM	TYPE	EFFECTIVE	TOTAL	EFFECTIVE	TOTAL	LPAR MGMT	EFFECTIVE	
S59	Α	801	Θ	502	NO		20.0	CP	02.13.34.022	02.13.34.604	44.52	44.53	0.00	44.52	
S50	A	500	0	0	NO		20.0	CP	00.00.00.000	00.00.00.000	0.00	0.00	0.00	0.00	
S51	A	100	0	53	NO		3.0	CP	00.13.58.918	00.14.00.016	31.07	31.11	0.01	4.66	4.67
S55 S58	A	101 999	0	68 493	NO NO		20.0 20.0	CP CP	00.18.01.114 02.11.06.315	00.18.01.538	6.01 43.70	6.01 43.70	0.00	6.01 43.70	6.01 43.70
*PHYSICAL		999	0	495	NO	0.0	20.0	CP	02.11.00.515	02.11.06.763 00.00.04.264	43.70	43.70	0.00	43.70	43.70
*PRISICAL	*									00.00.04.204			0.02		0.02
TOTAL									04.56.40.370	04.56.47.186			0.04	98.89	98.93
TOTAL									011001101070	011001111200			0.01	20102	50150
S59	Α	150					2	AAP	00.00.00.373	00.00.00.419	0.02	0.02	0.00	0.02	0.02
S50	Α	150					2	AAP	00.00.00.000	00.00.00.000	0.00	0.00	0.00	0.00	0.00
S51	Α	150					2	AAP	00.00.00.737	00.00.00.770	0.04	0.04	0.00	0.04	0.04
S55	Α	150					2	AAP	00.00.00.283	00.00.00.327	0.02	0.02	0.00	0.02	0.02
S58	Α	150					2	AAP	00.00.00.317	00.00.00.359	0.02	0.02	0.00	0.02	0.02
*PHYSICAL	*									00.00.00.993			0.06		0.06
TOTAL									00.00.01.713	00.00.02.870			0.06	0.10	0 16
TUTAL	_				_				00.00.01./13	00.00.02.8/0			0.00	0.10	0.16

Source: RMF V1R10 Report Analysis

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

RMF CPU Activity Report

		z/OS V1R10			M ID S59 ERSION V1R10		ATE 07/28/2009 (ME 16.45.00	
CPU	2097	MODEL 720	H/W MODEL	E26 SI	EQUENCE CODE	0000 00005	5C34F HIPERDISPATCH=	YES
(CPU		TIME	&		LON PROC	I/0 INTERRUPTS-	
	TYPE		LPAR BUSY			SHARE %	RATE % VIA TP	PI I
0	СР	100.00	99.96	100.0	0.00	100.0	95.31 0.03	
1	CP	100.00	99.60	100.0	0.00	100.0	0.00 0.00	
2	CP	100.00	99.58	99.97		100.0	0.00 0.00	
3	CP	100.00	99.58	99.97		100.0	0.00 0.00	
4	CP	100.00	99.58	99.98	0.00	100.0	0.00 0.00	
5	CP	100.00	78.17	100.0	0.00	70.3	0.00 0.00	
6	CP	100.00	78.10	100.0	0.00	70.3	0.00 0.00	
7	CP			0.00	100.00	0.0	0.00 0.00	
8	CP		0.01	0.00	100.00		0.00 0.00	
9	CP	100.00	0.01	0.00		0.0	0.00 0.00	
Α	CP	100.00	0.01	0.00	100.00		0.00 0.00	
В	CP	100.00	0.01	0.00	100.00		0.00 0.00	
С	CP	100.00	0.01	0.00	100.00		0.00 0.00	
D	CP	100.00	0.01	0.00	100.00	0.0	0.00 0.00	
Ε	CP	100.00	0.01	0.00	100.00		0.00 0.00	
F	CP	100.00	0.01	0.00	100.00		0.00 0.00	
10	CP	100.00	0.01	0.00	100.00		0.00 0.00	
11	CP	100.00	0.00	0.00		0.0	0.00 0.00	
12	CP	100.00	0.00	0.00	100.00	0.0	0.00 0.00	
13	CP		0.00	0.00	100.00	0.0		
тот/	AL/AVER/	AGE	32.76	34.99		640.6		
16	AAP	100.00	0.03	0.03	0.00	40.0		
17	AAP	100.00	0.01	0.00	100.00	0.0		
тот	AL/AVER/	AGE	0.02	0.03		40.0		
14	IIP	100.00	0.02	0.02	0.00	40.0		
15	IIP	100.00	0.01	0.00	100.00	0.0		
TOT	AL/AVER/	AGE	0.02	0.01		40.0		

Source: RMF V1R10 Report Analysis

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

RMF Monitor III Processor Delays - 1

Command =	Command ===> RMF V1R8 Processor Delays Line 1 of 138 Scroll ===> HALF											
Samples:	60	Syst	em: M\	/\$1	Date	e: 10/31	/06	Time: 09.	.10.00	Range:	60	Sec
Jobname		Service Class	СРИ Туре	DLY %	USG %	EApp1 %	2%	Name	ło1ciing % Na		%	Name
WSWS7 WSP1S2FS		OMVS WASCR	CP CP AAP	11 4 6	46 4 0	59.4 42.5 98.4	2	*ENCLAVE DBS3DIST *ENCLAVE	7 DBS 2 WSW			VSP1S2F VTAM44
WSP1S6FS		WASCR	CP AAP	0 6	0 0	5.3 7.7	6	* ENCLAVE				1001005
DBS3DBM1 WSP1S6F		DB2HIGH WASCR	CP CP AAP	2 0 2	6 2 2	0.8 1.9 0.7		XCFAS ★ENCLAVE	2 DBS	3DIST	21	NSP1S2F
U078069 WSP1S4F	-	OMVS WASCR	CP CP AAP	2 0 2	4 0 0	1.2 0.1 0.4		WSWS7 WSP1S6F	2 DBS	3DIST	2 (J078069
U078068 DBS3DIST	-	OMVS DB2HIGH	CP CP	2 0	0 78	0.2 111.0		XCFAS	2 WSW	S7	2 ,	*ENCLAVE
XCFAS	S	SYSTEM	IIP CP	0 0	2 28	21.3 24.1						

Think Faster with

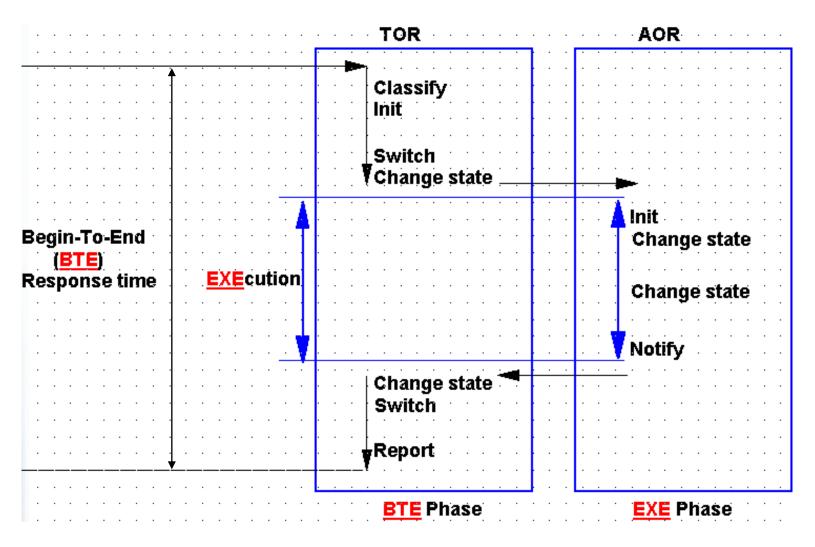
Gelb Information

© 2010 Gelb Information Systems Corp.

RMF Monitor III Processor Delays - 1 NOTES

Processor delays report identifies who is delayed and by ABOUT how much.

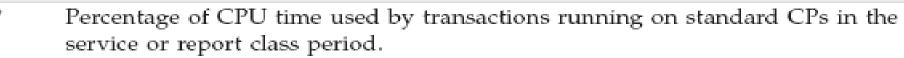
- DLY % = (# of Delay Samples / # of Samples) * 100 is % of time task is delayed from getting CPU time
- USG % = (# Using Samples / # Samples) * 100 is % of time the task is receiving CPU service
- 3. Holding Job(s) up to three tasks that most contributed to delay


Note that delays are collected via statistical sampling!

Think *Faster* with Gelb Information

RMF CICS Measurements

Source: Chris Baker, IBM Hursley, UK


Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

	z/05 V1R10	W U SYSPLEX SVPLEX3 RPT VERSION V1R10 R	DATE 07/28/2009 MF TIME 12.00.00		9.995 MODE = GOAL	PAGE 1
			CTIVATION DATE/TIME 11/0 WORKLOAD & SERVICE CLAS			
					SERVI	CE CLASS(ES)
	REPORT BY: POLICY=BASEPOL	WORKLOAD=STC_WLD	SERVICE CLASS=STCHIGH CRITICAL =NONE DESCRIPTION =High prio	RESOURCE GROUP=*NONE ority for STC workloads		
	-TRANSACTIONS- TRANS-TIM AVG 0.00 ACTUAL MPL 0.00 EXECUTION ENDED 62 QUEUED END/S 0.03 R/S AFFIN	62 SSCHRT 62 RESP θ CONN	0.0 IOC 0 0.0 CPU 0 0.0 MSO 0	SRB 0.015 AAPCP 0	PROMOTED .00 BLK 0.000 .00 ENQ 0.000 .00 CRM 0.000	AVG 695.77 TOTAL 1.49
	#SWAPS 62 INELIGIBL EXCTD 0 CONVERSIO AVG ENC 0.00 STD DEV REM ENC 0.00 MS ENC 0.00	.E 0 Q+PEND	0.0 TOT 2933	HST 0.000 AAP 0	.00	PAGE-IN RATES- SINGLE 0.0 BLOCK 0.0 SHARED 0.0 HSP 0.0
		-NUMBER% 62 100 00 0 0 00	RESPONSE TIM GOALACTU 0.00.00.500 80% 98.4 0.00.05.000 80% 0.0 0.00.15.000 AVG 00.00.00	AL TOTAL GOAL % 98.4% %		8
	TOTAL	62 100				
	REPORT BY: POLICY=BASEPOL	. WORKLOAD=STC_WLD	SERVICE CLASS=STCLOW CRITICAL =NONE DESCRIPTION =Low prior	RESOURCE GROUP=*NONE rity for STC workloads		
	-TRANSACTIONS- TRANS-TIM AVG 0.12 ACTUAL MPI 0.12 EXECUTION	1E HHH.MM.SS.TTTDASD 5.341 SSCHRT 5.341 RESP				AVG 679.09
	[Source: RMF V1R	R10 Report Analysis			
Thir	k <i>Faster</i> with	<u></u>	© 2010 Gelb Infor		orn	
	o Information	N. et al.	ons? Email to: iva	•	*	33

Notes- RMF Workload Activity

The calculation is:

CPU + SRB + RCT + IIT + HST - AAP - IIP APPL% CP = ------ * 100 Interval length

Notes:

- 1. The interval length in a sysplex is the common interval length.
- 2. The AAP and IIP times may be normalized from a faster zAAP or zIIP.

AAPCP

Percentage of CPU time used by zAAP eligible transactions running on standard CPs. This is a subset of APPL% CP.

- IIPCP Percentage of CPU time used by zIIP eligible transactions running on standard CPs. This is a subset of APPL% CP.
- AAP Percentage of CPU time used by transactions executed on zAAPs in the service or report class period.
- IIP Percentage of CPU time used by transactions executed on zIIPs in the service or report class period.

Source: RMF V1R10 Report Analysis

Think *Faster* with Gelb Information

AAPCP and IIPCP will forecast ZAAP and ZIIP potential utilization with PROJECTCPU option specified in IEAOPT member of PARMLIB

© 2010 Gelb Information Systems Corp.

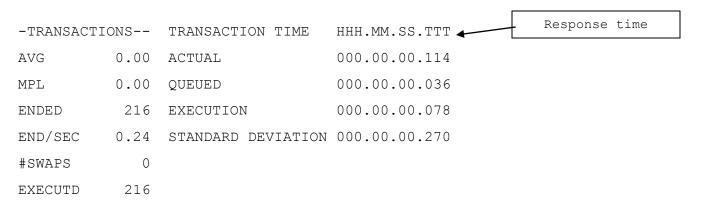
RMF Workload Activity

	1.1								-	•	
77	REPORT BY:	POLI	CY=BASEPOL	WORKLOAD=CICS_WLD	SERV CRIT		SS=CICSLOW =NONE	RESOURC	E GROUP=*NONE	PERIOD=1	IMPORTANCE=4
	-TRANSACTI	ONS	TDANS_TIME	HHH.MM.SS.TTT							
	AVG		ACTUAL	HHH.MM.33.111 0							
	MPL	0.00	EXECUTION	0							
	ENDED	893	QUEUED	0							
	END/S		R/S AFFIN	0							
	#SWAPS	0.50 0	INELIGIBLE	0							
	EXCTD	ē	CONVERSION	0							
	AVG ENC	-	STD DEV	ê							
	REM ENC	0.00	510 020	0							
	MS ENC	0.00									
	HO ENG	0.00									
		RESP			STA	TE SAMPL	ES BREAKDO	WN (%)			STATE
	SUB P	TIME	ACTIVE	READY IDLE			WA	ITING FOR-			- SWITCHED SAMPL(%)
	TYPE	(%)	SUB APPL								LOCAL SYSPL REMOT
	CICS BTE	ò.o	0.0 0.0		4.4						0.0 0.0 0.0
	CICS EXE	0.0	0.0 0.0								0.0 0.0 0.0
						Carro		and			
	GOAL: RESE	PONSE	TIME 000.00.	30.000 FOR 75%			CPU time				
						mone	y! Get the	Goal			
			SE TIME EX	PERF		and F	Response	time			
	SYSTEM	ACT	UAL% VEL%	INDX			•				
					J		ution from				
	*ALL			0.5		No Cl	CS transa	ction			
	CB8B CB86			0.5		امريما	data colled	otion			
	CB80 CB87			0.5							
	CB88			0.5		requi	red to get	this!			
	CB89			0.5	/ -						
	0009		100 11/ 4	. 0.5							
					RESP	ONSE TIM	E DISTRIBU	TION			
	TIM	1E	NUMBER	OF TRANSACTIONS			ENT	0 10		9 60 70	3 80 90 100
	HH. MM. S		CUM TOTA				IN BUCKET		. []]		
	< 00.00.1		89			100	100		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		
	<= 00.00.1					100	0.0	>			
	<= 00.00.2		89			100	0.0				
						100					

Source: RMF V1R10 Report Analysis

Think Faster with

Gelb Information



© 2010 Gelb Information Systems Corp.

RMF Workload Activity - 2

REPORT BY: POLICY=HPTSPOL1 WORKLOAD=PRODWKLD SERVICE CLASS=CICSHR RESOURCE GROUP=*NONE PERIOD=1 IMPORTANCE=HIGH

RESPONSE TIME BREAKDOWN IN PERCENTAGE															STATE			
SUB	P	TOTAL	ACTIVE	READY	IDLE		WAITING FOR							SWITCHED TIME (%)				
TYPE						LOCK	I/O	CONV	DIST	LOCAL	SYSPL	REMOT	TIMER	PROD	MISC	LOCAL	SYSPL	REMOT
CICS	BTE	93.4	10.2	0.0	0.0	0.0	0.0	83.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83.3	0.0	0.0
CICS	EXE	67.0	13.2	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46.7	0.0	0.0	0.0	0.0
														Ţ				
													Time	in D	B2 or			
													IMS	S or	MQ			

This is a sample RMF post processor (ERBRMFPP) output with option SYSRPTS(WLMGL(SCPER))

Source: Chris Baker, IBM Hursley, UK

Think Faster with

Gelb Information

CICS Statistics

- Written to SMF
- Control: CEMT SET STATISTICS INTERVAL(hhmmss) default = 3 hrs. ENDOFDAY(hhmmss) default = 000000
- Can be requested via CEMT for any one of the over 20 specific areas of CICS
- Reports via DFHSTUP and DFH0STAT

Think *Faster* with Gelb Information

CICS Statistics - 2

- Recommendation: INTERVAL(hhmmss) Make the interval match the RMF – SMF data collection interval's duration. Same use as DFHSIT STATINT.
- Enables effective analysis of resource utilization statistics collected by SMF- RMF in conjunction with the CICS statistics.

Think *Faster* with Gelb Information

CICS Statistics - 3

- Recommendation: Modify ENDOFDAY(hhmmss) default = 000000 Modify default to eliminate chance of performance problems at every midnight. Same use as DFHSIT STATEOD.
- Offsetting ENDOFDAY by just a few seconds (≤ 2 * nr. Of CPUs) for limited groups of regions is the recommended solution.

Think *Faster* with Gelb Information

CICS Statistics – 4

- Requested statistics produced by: CEMT PERFORM STATISTICS RECORD ALL or for over 20 specific domains
- Requested RESET statistics produced by: CEMT PERFORM STATISTICS RECORD ALL RESETNOW or for specific domains
- Unsolicited statistics are produced for dynamically managed resources: buffer pools, terminals, files, etc...

Think *Faster* with Gelb Information

Dispatcher Domain -1

- Current MXT limit
- Solution Not a state of the second sec
- Peak tasks??
- TRANCLASS limit by class
- TRANCLASS limit reached by class

NOTE: Limits should only be hit intentionally, and watch out for excessive (about 25% above HWM) MXT as cause of increased WLM /SRM CPU needs!

Think *Faster* with Gelb Information

Dispatcher Domain –2

Processor timings by modes of TCB in CICS V4.1:

- QR = Quasi-reentrant (system & **applications**)
- CO = Concurrent (VSAM) mode TCB if SUBTSKS is 1
- FO = File Owning (VSAM)
- RO = Resource Owning
- D2 = Used to stop DB2 protected threads
- SZ = Used by FEPI interface
- RP = Used to make ONC/RPC calls
- EP = Runs event processing (new in v4.1)
- J8 = Run JVM in CICS key
- J9 = Run JVM in user key
- JM = Shared class cache management

Think *Faster* with Gelb Information

Dispatcher Domain – 3

Processor timings by modes of TCB in CICS V4.1:

- L8 = OPENAPI option and EXECKEY=CICS programs
- L9 = OPENAPI option and EXECKEY=USER programs
- SO = Used for calls to TCP/IP sockets interface
- SL = Used to wait for activity on a set of listening sockets
- S8 = Secure Sockets Layer (SSL) or LDAP request
- SP = Used for socket pthread owning task
- T8 = Used by tasks to perform system processing in JVM server (new in v4.1)
- TP = Owns and manages the LE enclave, JVM, THRD TCB pool, and T8 TCB of JVM server (new in v4.1)
- X8 = Used by tasks which call C or C++ program compiled with XPLINK option and defined with EXECKEY=CICS
- X9 = Used by tasks which call C or C++ program compiled with XPLINK option and defined with EXECKEY=USER

Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

Dispatcher Domain -4

- Number of MVS waits /TCB
- Accum. time in MVS wait /TCB
- Accum. Time dispatched /TCB
- Accum. CPU time /TCB
- Track & Note:
 - Total CPU & consumption rate of region
 - Wait-for-dispatch (incl. measurement distortions) = 3 4 (w/o capture ratio)

Think *Faster* with Gelb Information

........

Dispatcher Statistics – Summary

DISPATCHER STATISTICS

Dispatcher Start Date and Time : 11/24/2002 09:22:44.7563
Address Space CPU Time
Address Space SRB Time
Peak number of dispatcher tasks : 149
Peak ICV time (msec)
<u>Peak ICVR time (msec) 150000</u>
<u>Peak ICVTSD time (msec)</u>
Peak PRTYAGE time (msec) 0
Peak MRO (QR) Batching (MROBTCH) value : 1
Number of Excess TCB Scans
Excess TCB Scans - No TCB Detached : 901943M 🛞
Number of Excess TCBs Detached
Average Excess TCBs Detached per Scan : 0

Notes/Recommendations:

- Excess TCB scans and detaches increase unproductive overhead.
- Tune number of TCB-s allocated to minimize overhead.

Think *Faster* with Gelb Information

Dispatcher Statistics – V4.1 Summary

DISPATCHER STATISTICS

Dispatcher Start Date and Time	/2009 06:03:32.6499
Address Space CPU Time	00:05:27.182061
Address Space SRB Time	00:00:06.130045
Peak number of dispatcher tasks :	69
Peak ICV time (msec)	1000
Peak ICVR time (msec)	2500
Peak ICVTSD time (msec)	500
<u>Peak PRTYAGE time (msec)</u>	0
<u>Peak MRO (QR) Batching (MROBTCH) value :</u>	1
Number of Excess TCB Scans	239
<u>Excess TCB Scans - No TCB Detached :</u>	231
Number of Excess TCBs Detached :	12
Average Excess TCBs Detached per Scan :	0
Number of CICS TCB MODEs	21 🧲
Number of CICS TCB POOLs	5

Note: Three new TCB modes in V4.1: EP, T8, TP

Report Source: Steve Ware, from UFL Test Region

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

Dispatcher Statistics — Time by TCB Mode

DISPATCHER STATISTICS (Note: Columns 2 - 5 deleted to improve legibility)

								`
TCB	•	•	•	MVS	Total 1	'ime	<u>(Total Time</u>) Total CPU
Mode	•	•	•	Waits	in MVS w	<i>r</i> ait	Dispatched	Time / TCB
<u>QR</u> .	•	•	1305139	000	<u>)-18:18:33.2</u>	4 00	0-01:49:46.74	000-01:12:02.27
RO	•	•	•	48658	000-20:05:12	2.28	000-00:02:46.27	000-00:01:00.80
CO	•	•	•	0	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
SZ	•	•	•	0	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
RP	•	•	•	0	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
FO	•	•	•	800	000-19:00:52	2.61	000-00:00:44.05	000-00:00:06.50
SL	•	•	•	1	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
SO	•	•	•	2	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
S8	•	•	•	0	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
D2	•	•	•	2419	000-20:18:01	. 28	000-00:00:03.26	000-00:00:00.43
<u>18 .</u>	•		1695257	8 007	7-03:07:31.3	1 00	0-05:36:18.48	000-01:13:35.37
Н8	•	•	•	0	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00
J8	•	•	•	0	000-00:00:00	0.00	000-00:00:00.00	000-00:00:00.00

Recommendation: If QR TCB "Total Time Dispatched" is more than 1.25 times "Total CPU Time/TCB," determine response time degradation and seek increased importance in WLM Service Policy if degradation is significant.

Think *Faster* with Gelb Information

READ I/O Performance

Performance factors:

- IOS queuing
- Channel utilization
- Amount of cache
- Device utilization
- Intra-file contention
- Inter-file contention
- Path utilization
- I/O pend request handling by CPU

Think *Faster* with Gelb Information

WRITE I/O Performance

Performance factors:

- IOS queuing
- Channel utilization
- Amount of NVS cache
- Contention with other writers
- Disk device utilization
- Intra-file contention
- Inter-file contention
- I/O path utilization
- I/O pend request handling by CPU.

Think *Faster* with Gelb Information

I/O Device Activity (RMF PP Report)

DIRECT ACCESS DEVICE ACTIVITY

	Z	/OS V1R8				STEM ID T VERSION	SYS1 V1R8				1/28/2 16.30.0				ERVAL 1 LE 1.00				
TOTAL S	AMPLES	= 900	IODF	= A3	CR	-DATE: 07	/21/2	006	CR-TI	ME: 07	.42.20	9	A	CT: POR					
						DEVICE	AVG	AVG	AVG	AVG	AVG	AVG	AVG	%	%	%	AVG	*	*
STORAGE	DEV	DEVICE	VOLUME	PAV	LCU	ACTIVITY	RESP	IOSQ	CMR	DB	PEND	DISC	CONN	DEV	DEV	DEV	NUMBER	AN Y	MT
GROUP	NUM	TYPE	SERIAL			RATE	TIME	TIME	DLY	DLY	TIME	TIME	TIME	CONN	UTIL	RESV	ALLOC	ALLOC	PEND
	0401	3380K	SYSLIB		0032	1.246	4.6	0.0	0.0	2.2	2.5	0.1	2.0	0.25	0.26	0.0	89.6	100.0	0.0
	0402	3380K	SYSUSR		0032	0.250	1.4	6.3	0.0	0.1	0.3	0.0	1.0	0.03	0.03	0.1	14.0	100.0	0.0
	040F	3380K	SCL338		0032	0.000	0.0	0.0	5.4	6.8	0.0	0.0	0.0	0.00	0.00	0.0	0.0	100.0	0.0
			LCU		0032	1.496	4.1	0.0	0.0	1.3	2.1	0.1	1.8	0.07	0.07	0.0	104	100.0	0.0
	044F	3380K	MVSPG1		0033	0.000	0.0	0.0	0.0	0.0	6.3	0.9	0.0	0.00	0.00	0.0	9.9	100.0	0.0
	0460	3380K	RMFLIB		0033	0.036	6.1	0.0	0.0	0.3	1.5	6.9	4.6	0.02	0.02	0.0	6.0	100.0	0.0
	047 F	3380K	MVSPLX		0033	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	100.0	0.0
			LCU		0033	0.036	6.1	0.0	0.0	0.3	1.5	0.0	4.6	0.00	0.00	0.0	4.0	100.0	0.0
	0500	33903	MVSLIB		0034	0.082	22.6	0.0	0.0	13.0	16.2	0.3	6.1	0.05	0.05	0.0	20.4	100.0	0.0
	0501	33903	MVSSCF		0034	0.012	1.6	0.0	0.0	0.0	0.5	0.0	1.0	0.00	0.00	0.0	4.6	100.0	0.0
	0502	33903	MVSCI2		0034	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	100.0	0.0
OMVSSYS	0503	33903	MVS0P2		0034	0.008	19.2	0.0	0.0	0.0	0.8	0.0	18.4	0.01	0.01	0.0	0.0	100.0	0.0
	0705	33909	15CY09		0035	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	100.0	0.0
	0707	33909	16RJ02		0035	0.036	55.2	0.0	0.0	36.7	44.6	0.0	10.6	0.04	0.04	0.0	0.0	100.0	0.0
	0708	33909	15CYX9		0035	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	100.0	0.0

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

Any questions? Email to: <u>ivan@gelbis.com</u>; Call: 732-303-1333

PAGE

RMF Monitor III- Device Delays

Command =	===;	>		RMF	V1	R8	De	vice Dela	ys			Line Scroll		of 57 > HALF
Samples:	100	0 Syst	tem:	MV	\$1	Da	te <i>r</i>	10/31/06	Ti	ime: 10.	03.20	0 Range:	100) Sec
Jobname		Service I Class	DLY %	USG %	COI %	N	%	VOLSER	Mai %	in Delay VOLSER	Volu %	ume(s) ∜0LSER	%	VOLSER
MARYPATM		NRPRIME	70	51				TSOL11	1	DUMP00				
MICHAELL MCPDUMP		NRPRIME SYSSTC	39 36	15 18	1			BPXLK1 D24PK2						
CHARLESR		NRPRIME	33	13				BPXLK1	3	HSML02	2	BPXSSK		
DFHSM	S S	SYSSTC	30	83	3	5	10	HSML17	5	SMS026		HSMOCD	4	HSMBCD
SHUMA3	Τī	TSOPRIME	18	52	5	3	13	D83ID0	5	HSML02				
DAVEP	Τī	TSOPRIME	16	9	1	Ð	4	HSM009	3	HSM005	2	HSML06	1	SMS013
CATALOG	S :	SYSTEM	9	15	2	1	2	CLR007	1	HSM036	1	HSM018	1	HSM011
DB2MDBM1	S :	SYSSTC	9	7	3	5	7	DB2MS2	1	DB2MD0	1	DB2MS0		
GINNI	Τī	TSOPRIME	8	10	1	9	3	HSML17	2	CLR010	1	HSM032	1	NATPK1
TREVORJ	ΤĪ	TSOPRIME	6	10	1	1	2	HSM022	1	HSM001	1	RESPK1	1	HSM024
RHANSON	ΤĪ	TSOPRIME	6	9	1	В	4	HSML17	1	RESPK1	1	NATPK1		
косн	ΤĪ	TSOPRIME	6	3		3	2	HSML17	1	CLR010	1	HSM018	1	HSM043

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

RMF- File I/O Tuning – VSAM LRU

Command ===:		V1R8 VSAM	1 LRU 0	verview	- SYSF	PLEX		Line 1 of]] == =>	
Samples: 12	0 System	s:2 [Date: 1	0/31/06	Time: 1	13.25.00) Ran	ge: 120	Sec
MVS System	160	Buffer Si Goal Hi	ize – igh	Accel R %	eclaim %			DASD%	
SYS4 Below 2GB Above 2GB SYS5	0.023 3.543	MAX MAX	1M 1M	0.0 0.0	0.0 0.0		0.0 0.0	0.0 2.5	
Below 2GB	4.457	MAX	1M	0.0	0.0	0.0	0.0	0.0	

- Buffer goal limit defaults to 100 MB; can be 1.5 GB max; see IGDSMxx in your PARMLIB for details
- Second With Control and Control

Think *Faster* with Gelb Information

M3- File I/O Tuning – VSAM RLS

E.									
		RMF V1R8	8 VSAM	RLS Act	ivity	– SY	SPLEX	Line 1	of 20
Command ===>								Scroll ==	=> HAL
Samples: 120	Sy	stems: 2	2 Da	te: 10/	31/06	Time:	13.25.0	00 Range: 12	0 Sec
								•	
LDIL Chatter		B / > 20		VSA	M R	LS ac	ctivity t	by data se	t.
LRU Status Contention %	: GOO	d / Acce 0 / 0.0							
False Cont %		0 / 0.0				ilabla	hy Ct	araga Clas	
rarse cone o		• , •.•	*	AI50	ava	liable	by Sil	orage Clas	5 .
Sphere/DS A	ccess	Resp		Read				BMF	Write
•		Time	Rate	BMF%	CF%	DASD%	Valid%	False Inv%	Rate
DATA T. MARATAL M									
BMAI.VSAMIN.M									
BMAI.VSAMIN.	MEGA.A	IX.DATA							
Below 2GB	DIR	0.003	0.01	0.0	0.0	100	0.0	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
Above 2GB	DIR	0.003	0.01	0.0	0.0	100	0.0	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
BMAI.VSAMIN.	MEGA.A	IX.INDEX	(
Below 2GB	DIR	0.003	0.03	50.0	0.0	50.0	100	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
	DIR	0.003	0.03	50.0	0.0	50.0	100	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
BMAI.VSAMIN.	-								
	DIR	0.000	7.45	83.2	0.0	16.8	100	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00

Think *Faster* with Gelb Information

- HE

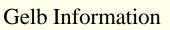
© 2010 Gelb Information Systems Corp.

- "LRU Status" status of local buffers under Buffer Manager Facility (BMF) control
 - \odot GOOD = BMF at or below goal
 - Output Accelerated because BMF
 Accelerated because BMF
 is over goal
 - B RECLAIMED = buffer aging bypassed accelerated because BMF is over goal
- "BMF Valid %" percent of BMF reads that were valid NOTE: BMF read hits are sum of valid and invalid hits. Buffers can be invalid because (A) data altered, or (B) CF lost track of buffer status
 - BMF READ HIT% = BMF READ% / BMF VALID% * 100
 - BMF INVALID READ HIT% = BMF READ HIT% BMF READ%

© 2010 Gelb Information Systems Corp.

Gelb Information

Think *Faster* with



CICS File Control Statistics

- FC Calls total by the 7 types: Get, Get Upd, Browse, Update, Add, Delete, Brws Upd
- VSAM Data component physical I/Os
- VSAM Index component physical I/Os

Recommendation: Tuning Objective is to Maximize ratio of: ΣFC Calls / (Data + Index I/Os)

Think *Faster* with

CICS VSAM File Control Statistics

File	Get	Get Upd	Browse	Update	Add	Delete	Brws Upd	VSAM EXCP	Requests	<u>RLS req</u>
Name	Requests	Data	Index	Timeouts						
AAAB2SP	34238	0	0	0	0	0	0	22	1	0
BBBACTV	0	27	0	27	376636	0	0	382501	0	0
CCCFNDD	65928	0	0	0	0	0	0	15089	6228	0
DDDIAFD	4767	0	25159	0	0	0	0	12609	148	0
EEEINTX	27088	0	8124	0	0	0	0	3	2	<u> </u>
FFFPNDD	17969	5310	0	5310	166	0	0	9905	799	0
GGGSCRX	488	0	0	0	0	0	0	18	59	0
HHHSEGH	33043	43	1712	43	43	0	0	1597	841	<u> 0 </u>
IIISEG1	48931	6925	531	2810	6739	4115	0	15537	2862	0
JJJSEG2	23634	745	0	205	745	540	0	1291	1	0
KKKTBLS	537	0	75997	0	0	0	0	525	26	0 🙂
LLLTEST	0	0	0	0	41741	0	0	43761	0	0
MMMULHD	54891	43	0	43	0	0	0	806	453	0 🙂
NNNUNLD	32679	1640	0	1586	53	0	0	7319	2670	0
OOOPCFIL	37752	0	0	0	0	0	0	21	1	0 🙂
TOTALS	427489	18626	155690	13864	459660	4655	0	536868	15546	0

Notes & Recommendations:

- 1. Totals are greater than all files shown because many files deleted from sample.
- 2. Focus your tuning to minimize/eliminate VSAM EXCP Requests.
- 3. ③ shown next to files with superior performance (least EXCP-s/Request).
- 4. BBB tuning options: faster IO service, application changes, file attributes,...
- 5. CCC, DDD, III, NNN appear to be good candidates for data in memory tuning.

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

CICS LSR Buffer Pools

- Buffer size
- Number of buffers
- Look-aside hits (This = saved I/Os)
- Buffer reads (I/Os required)
- User-initiated buffer writes (bad for LSR!)
- Sumber of requests waited for strings
- Recommendation: Maximize 3 & minimize 4 by adding buffers; isolate 5s; minimize 6s!!!

Think *Faster* with Gelb Information

CICS LSR Pools Statistics

LSRPOOLS				
<u>Total number c</u>	of pools built	•	17	
<u>Peak requests</u>	that waited for stri	.ng :	2	~
<u>Total requests</u>	s that waited for str	ing :	125 🙁	
<u>Peak concurrer</u>	ntly active strings	•	6	
Shared Buffers	<u>8</u>			
Pool	Look-		User	Non-user
Number	asides	Reads	writes	writes
1	644389	48039	4596	0
2	53249	824	0	0
3	234800	2568	139	0 🕲
4	83125	5164	5620	0
5	187335	21327	1658	0
6	23980	10	24460	0
7	397988	7033	12882	0 ③
8	86917	1443	1507	0
TOTALS	1711783	86408	50862	0

Recommendations: (1) Minimize/eliminate waits for strings. (2) Add buffers until reads are being reduced significantly. (3) Use multiple LSR pools to separate data from index, and good from poor buffer candidates.

Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

SMF Type 42 Details - 1

DASD //	Kpert														
Eile <u>H</u> elp									_						
Analysis	Datasets b	oy Volur	me [)ataba:	se by Vo	olume	Cache	Databa	ises P	artitions]	Tuning Sur	nmary)			
Volumes															
Volume	10 Intensity	10 Chit%	10 Resp	10 Conn	10 Pend	10 Disc	10 Queue	10 Count	Cache Cand	Cache Hits	IO/Sec	Cache Ratio	Write Cand	Write Hits	Write Ratio
DAS137	1.7062	64	28	4	0	13	11	240889	175485	154498	38,2363	88	1165	1110	9
DAS247	0.3747	98	11	3	0	6	2	214629	214127	210581	34.6810	98	736	728	9
DAS143	0.8266	84	21	4	0	11	6	212550	184434	178316	39.3611	96	141	134	9
DAS134	0.7370	92	25	4	0	15	6	185712	179908	171261	29.4781	95	992	966	9
DAS112	0.7701	51	30	3	0	14	13	161711	156953	82467	25,6684	52	83	79	9
DAS117	0.4516	85	16	3	0	8	5	152424	136737	129899	28.2267	94	1737	1730	9
DAS39G	0.3790	80	16	3	0	7	6	127905	109975	102143	23.6861	92	8428	8284	9
DAS108	0.7114	44	36	5	0	11	20	124498	64014	54794	19.7616	85	2937	2934	9
DAS118	0.5528	51	28	6	0	12	10	124380	92395	63461	19.7429	68	489	453	9
DAS39F	0.4028	74	21	3	0	10	8	120843	106381	89830	19.1814	84	4084	3915	9
DAS138	4.2508	87	33	6	0	18	9	109775	96728	95062	121.9722	98	22	20	9
DAS152	0.3421	69	20	3	0	10	7	107770	86877	74073	17.1063	85	2747	2673	97
DAS39S	0.8023	95	7	2	0	2	3	103149	99646	98015	114.6100	98	1598	1539	9
DAS39Q	0.1277	80	8	2	0	2	4	100566	83702	80886	15.9629	96	1557	1477	94
DAS39P	0.1716	89	8	2	0	3	3	96524	88289	85913	21.4498	97	2748	2648	96
DAS144	0.2932	90	20	3	0	12	5	92364	86214	82966	14.6610	96	581	575	98
DAS39N	0.1169	84	8	3	0	3	2	92076	80156	77517	14.6152	96	2618	2491	95

Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

SMF Type 42 Details - 2

Database	Object	File	Partition	10 Intensity	10 Chit%	10 Resp	18 Conn	10 Pend	10 Disc	10 Queue	10 Count	Cache Cand	Cache Hits	10/Sec	Cache Ratio	Write Cand	Write Hits	Write Ratio
DPOLBQMO	SPURCHS	10001	A001	0.6052	50	27	8	0	7	12	141223	83180	70355	22.4163	84	929	878	94
DRCLBQMO	SRECDIS	10001	A014	0.0114	55	26	7	0	8	11	2774	1967	1528	0.4403	77	125	123	98
DCRLBQMO	SCKACTV	10001	A016	0.0022	51	28	1	0	16	11	485	483	245	0.0770	50	85	84	98
DAPLBQMO	SPREQIT	10001	A027	0.0007	35	36	1	0	20	15	123	122	43	0.0195	35	22	21	95
DBSTPROD	SSKST	10001	A007	0.2547	86	18	2	0	5	11	89162	83252	76556	14.1527	91	3	3	100
DRCLBQMO	SRECITM	10001	A006	0.0010	49	31	5	0	21	5	203	166	99	0.0322	59	1	Ì	100
DAPLBQMO	SVNDINV	10001	A009	0.0000	0	43	1	0	33	9	Ť	1	0	0.0011	0	0	0	0
DEPLBQMO	ITEPITMH	10001	A002	0.0008	16	39	17	0	17	5	19	5	3	0.0211	60	0	0	0
DMLLBQMO	SWKSCLS	10001	A039	0.0517	82	27	6	0	4	17	6899	6309	5669	1.9164	89	0	0	0

Think Faster with

Gelb Information

© 2010 Gelb Information Systems Corp.

SMF Type 42 + RMF Type 74 Details - 1

7	Total	% of	Cummul.				Su	m of All A	Activity /	CPU / File	within t	he Syspl	ex	
	Serv./ IO Intensity (mins)	Current Total Service	% of Current Service	DATA NAME	Vol Ser	VOL RATE	FILE UTL	VOL UTL	ALL UTL	RESP M S	CONN MS	DISC M S	PEND MS	IOSQ MS
	13.71	6.68%	6.68%	А	1	77.6	45.7	48.8	48.8	16.1	3.6	2.3	0.3	10
	6.81	3.32%	10.00%	В	2	40.3	22.7	23.1	23.1	6.5	3.6	2	0.3	0.6
	5.88	2.86%	12.86%	С	3	12.2	19.6	19.8	24.4	23.4	3.5	12.7	1	6.3
	4.89	2.38%	15.24%	D	4	36.4	16.3	23	23	6.7	1.2	3.3	0.3	1.9
	4.65	2.27%	17.51%	E	5	22.4	15.5	15.8	15.8	11.6	4	2.9	0.6	4.1
	4.53	2.21%	19.72%	F	6	29.5	15.1	15.3	15.3	8.6	2.2	2.9	0.3	3.2
	4.29	2.09%	21.81%	G	7	28	14.3	14.5	14.5	7.6	2.3	2.8	0.4	2
	4.29	2.09%	23.90%	Н	8	6.4	14.3	14.7	14.7	26.9	2.8	19.5	0.5	4.1
	4.23	2.06%	25.96%	I	9	8.9	14.1	14.2	30.7	24.4	3.8	11.9	3.3	5.4
	4.20	2.05%	28.00%	J	10	8.9	14	14.2	31.2	26.5	3.8	11.9	3.7	7
	4.11	2.00%	30.01%	K	11	36.8	13.7	15.9	15.9	5.2	1.3	2.4	0.3	1.3

							Р	hysical	IO Activ	vity Deta	ils by S	ysplex	Membe	r							
VOL SER	VOL RT2	PCT BY2	RSP TM2	IOQ TM2	CON TM2	DISC TM2	PND TM2	VOL RT4	PCT BY4	RSP TM4	IOQ TM4	CON TM4	DISC TM4	PND TM4	VOL RT5	PCT BY5	RSP TM5	IOQ TM5	CON TM5	DISC TM5	PND TM5
1	78.7	48.8	16.5	9.9	3.6	2.6	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.3	23.1	6.3	0.2	3.7	2.1	0.4
3	0.0	0.0	67.4	0.0	32.7	7.9	26.9	1.0	2.0	26.7	0.5	3.6	15.3	7.3	12.2	19.8	22.0	4.7	3.6	12.7	1.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	72.5	23.0	5.6	2.1	1.3	1.9	0.4
5	22.4	15.8	10.9	3.1	4.0	3.1	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	29.5	15.3	8.3	2.7	2.2	3.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	28.0	14.5	7.4	1.9	2.3	2.8	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	6.6	14.7	26.6	3.7	3.1	19.2	0.6	0.0	0.0	0.7	0.0	0.4	0.0	0.2	0.0	0.0	0.6	0.0	0.4	0.0	0.3
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.8	8.4	22.7	2.8	3.8	10.6	5.5	8.9	14.2	23.6	4.4	3.9	12.0	3.4
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.7	8.6	27.2	5.6	3.9	11.2	6.5	8.9	14.2	24.3	4.6	3.9	12.0	3.7
11	61.3	15.9	4.0	1.1	1.1	1.5	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

SMF Type 42 + RMF Type 74 Details - 2

Same analysis is now easier and possible with SMF type 40 and 60 records. How was this one done?

SMF type 42, file activity records, were collected for durations meaningful for this performance study

RMF type 74, disk activity records, were also collected for durations meaningful for this performance study

For each file activity record, on each OS/390 instance within the Sysplex, a summary record was produced by adding all the specific volume activity segments

The final report was sorted by data name, descending by IO intensity to produce the "80/20" report we were seeking

Think *Faster* with Gelb Information

The 80/20 of I/O Tuning Analysis

Plan Name	Total Elapsed	Total CPU	CPU / Elapsed	Freq.	Total Time	@25% IOs Saved
P09GI0032	120	18	15%	100	12,000	-2,550
P09GI0003	240	44	18%	100	24,000	-4,900
P09GI0009	80	48	60%	1000	80,000	-8,000
P09GI0018	310	53	17%	100	31,000	-6,425

- In what order would you focus your efforts? Why?
- How many votes for the sequence of 9, 18, 3, 32?
- How many votes for the sequence of 32, 3, 9, 18?

Think *Faster* with Gelb Information

Case of Unstable Performance - 1

- If CPU utilization increased to over 95% during any 30 minute period, DB2 response time would begin to wildly fluctuate.
- CICS, DB2 involved
- Significant DB2 activity generated directly from Internet as well as CICS regions

Think *Faster* with Gelb Information

Case of Unstable Performance – 2

- Where to look?
 - CPU activity reports from various sources
 Showed that utilization was at 100% a lot of the time
 - Degradation analysis reports from various incidents of degradation showed <u>virtually</u> every task within the system as THE suspect cause of the problem
 - IO activity reports did not show unusual activity between the good v. the bad periods

Think *Faster* with Gelb Information

Case of Unstable Performance – 3

So who done it? The Butler of course! In plain view!

WLM Service policy did it!

- All service classes regardless of importance, had velocity goals, and
- The sum of velocity goals of the active service class periods exceeded processor capacity

The fix:

- Introduced response time goals for some service classes
- Used CPU Critical attribute for importance 1 work
- Reduced velocity goals of lower importance work

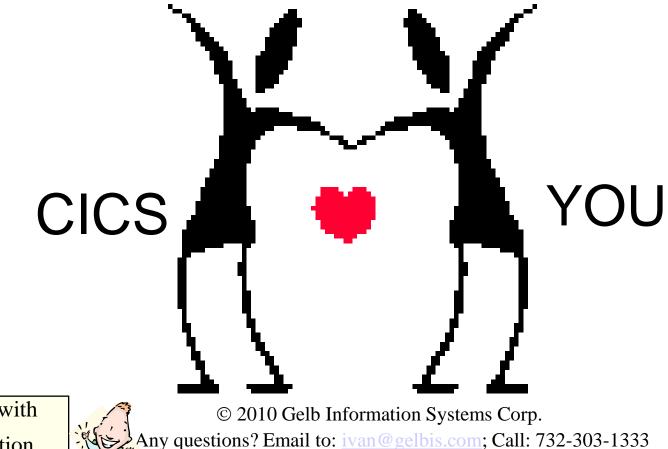
Think *Faster* with Gelb Information

© 2010 Gelb Information Systems Corp.

References

- CICS Information Center IBM CICS Transaction Server for z/OS Version 4.1
- CICS Performance Guide, SC34-6009
- CICS Performance Management Guide, SC33-1699
- Videos On YouTube (follow CICSfluff):
 - Performance comparison between CICS TS V3.2 and CICS TS V4.1 and CICS TS V4.1 with WLM
 - Threadsafe Analysis with the CICS Explorer and CICS Tools

Think *Faster* with Gelb Information



© 2010 Gelb Information Systems Corp.

Be @Next SHARE / Questions?

Join us at the next SHARE in the Spring of 2011. There will be a plethora of sessions about the latest CICS performance news and the views of the expert presenters.

Think Faster with Gelb Information

